Syllabus

Mathematics for Political Science

Political Science 598 Fall 2014 Mo/We 10:00-11:30am 4151 USB

Instructor: Iain Osgood 6741 Haven Hall iosgood@umich.edu Office hours: Mo: 4-5; We: 2:30-4. GSI: Jason Davis 7730 Haven Hall jasonsd@umich.edu Office hours: Th: 2-4

This course provides an introduction to a set of mathematical concepts and skills commonly used in formal and empirical methods in political science. These include: multivariate calculus techniques and applications; certain fundamental topics in the study of probability and distributions; common techniques in linear algebra; and a detailed examination of optimization. While a greater weight will be placed on preparing students for coursework on formal theory, most of the concepts examined are regularly employed in the study of empirical methods, and lectures and problem sets will use examples from both formal and empirical methods.

Three objectives will be pursued throughout the course. First, to develop fluency with all of the concepts and techniques described in detail in the biweekly meetings laid out below. Second, to increase comfort with the symbolic rendering of real world concepts, formal reasoning, and methods of proof. Third, to improve understanding of mathematics in both formal and quantitative studies in political science. In other words, to make following research which employs mathematics easier, and to provide you with a set of commonly used skills which will help in developing your own research.

Readings: There are two required books for the course:

Simon, Carl P., and Lawrence Blume. Mathematics for Economists. Vol. 7. New York: Norton, 1994.

Sundaram, Rangarajan K. A First Course in Optimization Theory. Cambridge: Cambridge University Press, 1996.

These texts will be abbreviated in the reading list using the abbreviations *SimBlu* and *Sun*, respecitively.

Course requirements: The course requirements comprise the following components.

Lecture and section participation: An important component of this course is active engagement with the material in both lecture and section. This also means benefitting from interacting with the instructors and fellow students. For this reason, attendance at all lectures and sections is mandatory, with the obvious exceptions of illness, personal issues or family emergency.

Problem sets: The course will have 8 problem sets, all of which must be submitted one week after they are released. The purpose of problem sets is to learn key concepts and their application through experience and repeated interaction. You should feel free to consult with your classmates (and the instuctors in office hours) but all final submitted answers should be fully understood and be your own work product. Problems sets will determine 50% of the course grade.

Midterm examination: There will be a midterm examination held in class on Wednesday, October 22nd. The midterm will cover a select set of the most important concepts discussed in the course up to that point. The emphasis will be on understanding and usage of the concepts, so you should focus your study on understanding the concepts and working through *brief* and memorable examples which illustrate how to employ particular techniques or ideas. The midterm will count towards 20% of the course grade.

Final examination: The final exam will be held on Monday, December 15th from 4-6pm. It will cover all of the material from the course, but with an emphasis on concepts covered after the midterm examination. The final exam will determine 30% of the course grade.

Office hours: My office hours will be held in 6741 Haven Hall on Mondays from 4:00-5:00pm and on Wednesdays from 2:30-4:00pm. If you cannot meet at this time, please send me an email and we will arrange a separate time to meet up.

Accommodations for Students with Disabilities: If you think you need an accommodation for a disability, please let me know as soon as possible. Some aspects of this course may be modified to facilitate your participation and progress. We can work with the Office of Services for Students with Disabilities to determine appropriate academic accommodations. SSD (tel.: 734-763-3000) typically recommends accommodations through a Verified Individualized Services and Accommodations (VISA) form. Any information you provide is private and confidential and will be treated as such.

Class topics and readings

I: Topics in Calculus and Probability

9/3: Differentiation

secant \cdot tangent \cdot definition of derivative \cdot power rule \cdot binomial theorem \cdot binomial coefficients \cdot derivative of e^x and $\ln x \cdot$ product rule \cdot chain rule \cdot anti-derivatives \cdot fundamental theorem of calculus

No assigned readings.

9/8: The expectation operator

random variable · PMFs/PDFs/CDFs · expected value of a random variable · integration by parts · linear-

ity of expectation \cdot expectations of functions of random variables \cdot variance \cdot properties of the variance operator

No assigned readings.

9/10: Multivariate calculus: partial and total derivatives

multivariate functions \cdot partial derivatives \cdot linear approximations \cdot total differences \cdot total differentials \cdot total derivatives \cdot (differentiating along) curves \cdot directional derivatives

SimBlu 13.1; 14.1-14.6.

9/15: Multivariate calculus: higher order derivatives and integration

gradients \cdot the Hessian matrix \cdot Young's theorem \cdot multidimensional integrals \cdot Fubini's theorem \cdot integrals with separable functions \cdot the Gaussian integral

SimBlu 14.8.

9/17: Joint distributions and further issues with the expectation operator

joint distributions of random variables \cdot marginal distribution \cdot conditional distribution \cdot conditional expectation \cdot independent random variables \cdot covariance \cdot correlation \cdot variance of sums of random variables \cdot variance-covariance matrix \cdot multivariate normal distribution

No assigned readings.

9/22: Taylor series expansion and other approximations

local linear approximation \cdot Taylor series \cdot kth order Taylor polynomials \cdot Maclaurin series \cdot the Delta method

SimBlu 2.7; 30.2-30.3.

II: Linear Algebra

9/24: Three images of linear algebra

(systems of) linear equations \cdot spanning vectors \cdot linear (in)dependence \cdot transformation matrices \cdot storing data \cdot projections

9/29: Systems of Linear Equations I

substitution \cdot Gauss-Jordan elimination \cdot augmented matrix \cdot matrix row operations \cdot (reduced) row echelon form \cdot basic and free variables \cdot rank \cdot nonsingular matrices \cdot linear independence \cdot results on existence and number of solutions

SimBlu 7.1-7.4.

10/1: Systems of Linear Equations II

matrix inversion \cdot noninvertible \cdot determinants \cdot minors/cofactors/adjoints \cdot properties of inverses and determinants

SimBlu 8.1-8.4; 9.1-9.2.

10/6: The Algebra of Vectors

vector operations \cdot length and direction of vectors \cdot inner product \cdot inner product and angle \cdot orthogonality \cdot triangle inequality \cdot parametric representation of a line \cdot linear combinations

SimBlu 10.1-10.6.

10/8: Vector spaces

Linear independence \cdot spanning vectors \cdot basis vectors \cdot dimension of a space \cdot vector spaces and subspaces \cdot row space \cdot column space \cdot null space \cdot the fundamental theorem of linear algebra

SimBlu 11.1-11.3; 27.1-27.5.

10/15: Eigendecomposition

eigendecomposition of vcov \cdot eigenvalues \cdot eigenvectors \cdot characteristic equations/roots \cdot systems of linear difference equations \cdot diagonalization

SimBlu 23.1-23.3; 23.7.

10/20: Quadratic forms

monomials \cdot quadratic forms \cdot positive (negative) definiteness \cdot positive (negative) semidefiniteness \cdot indefiniteness \cdot (leading) principal minors \cdot tests for definiteness using leading principal minors \cdot tests for definiteness using eigenvalues

SimBlu 13.3; 16.1-16.2.

10/22: In-class midterm examination

10/27: Implicit Functions

explicit functions \cdot implicit functions \cdot implicit function theorem

SimBlu 15.1-15.2.

10/29: Ordinary differential equations

ordinary differential equations \cdot autonomous DEs \cdot nth order DEs \cdot the logistic curve \cdot solving first order DEs \cdot separable equations \cdot direction field \cdot stationary or equilibrium points

SimBlu 24.1-24.4.

III: Optimization

11/3: Sequences and Series

sequences \cdot limits \cdot convergence/divergence \cdot accumulation point \cdot limsup/liminf \cdot Cauchy sequence \cdot monotonicity \cdot series \cdot power series

Sun 1.2.1-1.2.6.

11/5: Detour: Sequences of Random Variables I

sequences of random variables \cdot convergence in probability \cdot convergence in mean squared \cdot consistent estimators

No assigned reading.

11/10: Detour Cont.: Sequences of Random Variables II

convergence in distribution \cdot moment generating function (MGF) \cdot (lindeberg-levy) central limit theorem

No assigned reading.

11/12: Compactness and Optimization

sets · set relations (equality, subset, disjoint, union, intersections, complements) · set operations (products, differences) · correspondence · function · bijection · metric spaces · open/closed sets · boundedness · compactness · continuity · upper/lower contour sets · the weierstrass theorem · open coverings

Sun 1.2.7-1.2.10; 3.1-3.2.

11/17: Unconstrained (and Multivariate) Optimization

Sun 4.1-4.5.

11/19: Convexity and Quasiconvexity

convex sets \cdot epigraph/subgraph \cdot convex/concave functions \cdot tests for concavity \cdot implications of concavity (for optimization)

Sun 7.1-7.5.

11/24: Contrained Optimization I: The Lagrangian

the Lagrangian \cdot Lagrange multipliers \cdot constraint requirement \cdot checking for maxima/minima

Sun 5.1-5.5

12/1: Constrained Optimization II: Inequality Constraints

Sun 6.1-6.3.

12/3: Fixed point theorems *Sun* 9.1-9.2; 9.4.